
On the NP-Completeness of Cryptarithms

David Eppstei n

Computer Science Departmen t
Columbia University

New York, NY 10027

January 18, 1987

Cryptarithm puzzles, also known as alphametics, appear widely in recreational mathematics publications ,

and have also been used as an example of the efficiency of constraint propagation search techniques [5] . Here

we show that solving such puzzles is an NP-complete problem .

Many cryptarithms are given by Madachy [4], including the following well-known example :

SEND
+MORE

MONE Y

The puzzle is to find a one-to-one correspondence between letters in the puzzle and decimal digits (not.

all of which must appear) that will make the sum correct . There is usually also a rule that numbers ar e
expressed without leading zeros. The above example has a unique solution :

9567

+1085

10652

If we only consider problems with decimal numbers as above there is no possibility of any hardness result ,

because there are only 10! different assignments of digits and letters to try . Therefore we will generalize th e

problem slightly : the base of representation for our numbers will be given as part of the problem (expressed in

unary or binary) rather than always being decimal, and we will allow the puzzle to contain arbitrarily man y
different letters (up to the base of representation) . The decision problem for a puzzle will be to determin e

whether that puzzle has any solutions .

Constructing the Puzzle

Given a cryptarithm puzzle under the assumptions above, it is not too hard to see that a solution to the

puzzle need only be as long as the length of the base multiplied by the number of letters in the puzzle, an d

that such a solution can be verified quickly . Thus cryptarithms are in NP, and it remains to show that the y

are complete for NP. We will do this with a reduction from 3-SAT [2] : given a 3-CNF Boolean formula, w e

will construct a puzzle which is solvable if and only if the formula is satisfiable .

To produce enough symbols for the letters of the resulting cryptarithm, we will use subscripted letters .

Each variable and term of the Boolean formula will correspond to some contiguous set of columns of the

puzzle; it won't matter in what order these sets occur, except that we reserve the rightmost three column s

for the following letters :

Op 0

Op 0

1q 0

Here 0 and 1 should not be read as the digits 0 and 1 themselves, but as letters in the puzzle which ar e

forced by the above sequence of columns to stand for the digits 0 and 1 . That is, in any possible solution to
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any puzzle that has these rightmost columns, the letter 0 above must correspond to the actual digit 0, and

the letter 1 must correspond to the actual digit 1 .
For each variable v; of the formula we set aside the following columns, in which the letters v ; and v;

represent the variable and its complement :

d i 0 1y;0c;y;0b;yi 0a; 0

e ; 0 d i yi0ciyi0bi yi0 a i 0

v;0e i z i 0d i z i 0v i z i 0b; 0

The leftmost column (di + e ; = v;) will not be able to carry out because of what will be to its left ; th e
rightmost column enforces a similar restriction on whatever is to its right . The only letters in these column s
that will appear anywhere else in the puzzle are v ; and IT . Because b ; = 2a;, and v i = 2b;+0 or 1 dependin g
on whether y i + y i carries, we see that v i must be 0 or 1 mod 4 in any possible solution to the puzzle .
Similarly v; will be 1 or 0 mod 4 . We will say that a letter v; represents a true boolean value if it is 1 mod 4 ,
and false if it is 0 ; we see from the modulus relations above that v; in fact represents the complement of th e

value that v i represents .
There will also be a set of columns for each term (v a V v b V 10 in our 3-CNF formula (where the v j are

either variables or their complements) :

nab0 va0 1ri0g i w;0 f; 0
v~0 v b 0h i ri 0g i wi 0fi 0

t;0nab0 t;S i 0h i x i 0g; 0

If the same v a and v b appear in more than one term, we must use the same letter uab for all of those
terms. The rightmost columns (those with f;, gi, wi, h i, ri , and s ;) force t i to be one of 1, 2, or 3 mod 4 i n

a manner similar to the way v ; was forced to be either 0 or 1 mod 4. Then the leftmost columns force t ; to

equal v a + vb + ve, and since each of these is 0 or 1 mod 4, the fact that the sum is non-zero mod 4 force s

at least one of the letters v j to be 1 mod 4 .

The above shows that, given a solution to the cryptarithm, we can turn it into an assignment t o

the variables of the formula in the manner discussed above, and by the restrictions forced in the column s

corresponding to the terms it will be the case that each term in the formula will have at least one of it s

variables set to true . Thus a solution to the puzzle gives us a satisfying assignment to the formula . This wil l

be true no matter what base we choose for our arithmetic, but to complete the NP-completeness proof w e

must find a base that will give us the converse, so that from a satifying assignment to the formula we ca n

find a solution to the puzzle . It will turn out that with the base equal to 3072n 3 , where n is the numbe r

of variables in the formula, we can in fact find a solution if a satisfying assignment exists . This number i s

small enough to be represented in unary, and so all that remains to be proved is that the constructed puzzl e

is as claimed solvable .

Solving the Puzzl e

First we will restrict our attention to solutions in which the letters of the puzzle have the following value s

taken modulo 128 :

Letter : a b c d e f g h v, v it t p, r, w, y q, s, x, z

Value : 2, 34 ,

66, 98

4, 68 1,2, 33, 34 ,

65,66,97,98

3, 4 ,

67, 68

5, 69 6, 38 ,

70, 102

12, 76 24, 25 8, 9 16,17 ,

18

25, 26 ,

27

7, 71 14



We will also assume that our base is divisible by 128 . Define the class of x for any letter x to be lx/128j .
From the column b i + b i + carry = v i in the terms for that variable, we can deduce that b i = Lvi/2j, so that

if v i is fixed to have a given class, the value of b i is determined . Similarly all letters except those in the las t

two columns above will be fixed by the choice of v i and vi . We will be unable to solve the problem if tw o

letters take the same value, but the modulus relations make sure that this is only possible if there are tw o

triples of variables or their complements such that the sums of the classes in each triple are the same (th e

only possible collisions occur when two vi or two u ab , or two i have the same class, and the above cover s

all three cases) .

We also need to assign values to the letters in the last two columns, but that is easy since each pai r

doesn't interfere with any other pair (by the modulus relations) and any setting of q, s, x or z will allow

the corresponding sum to either carry or not carry as desired. So we need as many classes as there are suc h

letters in the puzzle, but this turns out to be less than we will need for the variables . The only other obstacl e

to a solution of the puzzle is that some digits might need to be larger than the base of arithmetic . We will

resolve this by setting the base to be at least three times the value assigned to the largest variable .

Thus our problem reduces to finding an assignment for the classes of the v i and vi letters such that al l

sums in triples are distinct . If we can do that, and given the modulus relations above, it will be an eas y

task to assign v i to be 8 or 9 mod 128 depending on whether or not the variable is true in our hypothetica l

satisfying assignment, and this will induce an assignment for all the other letters .

As a first try at generating a non-colliding assignment, we will set the classes of v i to be powers of 2 .

Any sum of distinct powers of two is distinct, so this satisfies our distinct triple requirement . However, suc h

an assignment will cause the base to be 0(4"), which is too large to be written in unary (but can be writte n

in binary) . So this doesn ' t give us as strong a result as we would like .

To find a solution with a smaller base, we must turn to a 1959 result of Bose and Chowla . They prove d

that for any k there is a set of k numbers, all between 1 and k 3 , such that their sums in triples are distinc t

[1,3] . Thus we only need our classes to run from 1 to (2n) 3 . If we multiply this by 128 • 3 for the value s

within each class and for room for the terms as described above, we see that from a satisfying assignment t o

the 3-CNF formula we can find a solution to the derived puzzle with a base of only 3072n 3 . Thus with this

as our base the puzzle can be solved if and only if the formula is satisfiable, and so as claimed cryptarithm s

are NP-complete even when the base must be written in unary .
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